The Forced Response of the El Niño–Southern Oscillation–Indian Monsoon Teleconnection in Ensembles of Earth System Models

Author:

Bódai Tamás1,Drótos Gábor2,Herein Mátyás3,Lunkeit Frank4,Lucarini Valerio5

Affiliation:

1. Pusan National University, and Center for Climate Physics, Institute for Basic Science, Busan, South Korea, and Department of Mathematics and Statistics, and Centre for the Mathematics of the Planet Earth, University of Reading, Reading, United Kingdom

2. Instituto de Física Interdisciplinar y Sistemas Complejos, CSIC-UIB, Palma de Mallorca, Spain, and MTA–ELTE Theoretical Physics Research Group, and Institute for Theoretical Physics, Eötvös University, Budapest, Hungary, and Max-Planck-Institut für Meteorologie, Hamburg, Germany

3. MTA–ELTE Theoretical Physics Research Group, and Institute for Theoretical Physics, Eötvös University, Budapest, Hungary, and CEN, Meteorological Institute, University of Hamburg, Hamburg, Germany

4. CEN, Meteorological Institute, University of Hamburg, Hamburg, Germany

5. Department of Mathematics and Statistics, and Centre for the Mathematics of the Planet Earth, University of Reading, Reading, United Kingdom, and CEN, Meteorological Institute, University of Hamburg, Hamburg, Germany, and Walker Institute for Climate System Research, University of Reading, Reading, United Kingdom

Abstract

AbstractWe study the teleconnection between El Niño–Southern Oscillation (ENSO) and the Indian summer monsoon (IM) in large ensemble simulations, the Max Planck Institute Earth System Model (MPI-ESM), and the Community Earth System Model (CESM1). We characterize ENSO by the June–August Niño-3 box-average SST and the IM by the June–September average precipitation over India, and define their teleconnection in a changing climate as an ensemble-wise correlation. To test robustness, we also consider somewhat different variables that can characterize ENSO and the IM. We utilize ensembles converged to the system’s snapshot attractor for analyzing possible changes in the teleconnection. Our main finding is that the teleconnection strength is typically increasing on the long term in view of appropriately revised ensemble-wise indices. Indices involving a more western part of the Pacific reveal, furthermore, a short-term but rather strong increase in strength followed by some decrease at the turn of the century. Using the station-based Southern Oscillation index (SOI) as opposed to area-based indices leads to the identification of somewhat more erratic trends, but the turn-of-the-century “bump” is well detectable with it. All this is in contrast, if not in contradiction, to the discussion in the literature of a weakening teleconnection in the late twentieth century. We show here that this discrepancy can be due to any of three reasons: 1) ensemble-wise and temporal correlation coefficients used in the literature are different quantities; 2) the temporal moving correlation has a high statistical variability but possibly also persistence; or 3) MPI-ESM does not represent the Earth system faithfully.

Funder

Horizon 2020 Framework Programme

DFG Cluster of Excellence CliSAP

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

AEI/FEDER, EU

DFG

Institute for Basic Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3