Interaction of a single bubble and an elastic plate: Influence of the standoff distance

Author:

Han LeiORCID,Hao LiangORCID,Zhu Jin,Zhang MindiORCID,Huang BiaoORCID

Abstract

The objective of this study was to investigate the coupled dynamics of a collapsing bubble and the motion of a nearby elastic plate at different initial distances. This was achieved using a combination of experimental and computational models. In the experiments, high-speed photography was used to record the temporal and spatial evolution of the collapse of a single bubble near an elastic boundary under normalized standoff distances γ ranging from 1.0 to 3.3. Digital image correlation was used to synchronously record the motion of the elastic plate. For the numerical simulations, taking the fluid compressibility and boundary motion into account, the immersed-boundary method was introduced to simulate the interaction between the elastic plate and bubble collapse. The results show that, with different initial distances, the dynamic behaviors of the bubble, including oscillation time, impact mode, and energy conversion, are different, and this is caused by the elastic rebound of the plate. In addition, the direction and amplitude of the deformation of the elastic plate are also influenced by the impact effects during bubble oscillation and rebound. The combined form of these impact behaviors changes with initial distance, and there are three typical impact patterns: the shock-wave effect, jet-effect, and hybrid shock-wave and jet-effect modes. In particular, when γ < 1.5, the jet effect and hybrid impact forms, which are dominated by the high-speed jet, can result in asymmetric deformation and cause greater local damage to the elastic plate. Finally, we summarize the combined mechanisms that govern the impact of a collapsing bubble on an elastic plate.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3