Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy

Author:

Zhang Guitao1,Chen Xi2,Xu Weihe3ORCID,Yao Wei-Dong4,Shi Yong1ORCID

Affiliation:

1. Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07307, USA

2. Advanced Science Research Center (ASRC), Department of Chemical Engineering, The City University of New York, New York, New York 10031, USA

3. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA

4. Departments of Psychiatry and Neurosciences, SUNY Upstate Medical University, Syracuse, New York 13210, USA

Abstract

Nano-piezoelectric materials have drawn tremendous research interest. However, characterization of their piezoelectric properties, especially measuring the piezoelectric strain coefficients, remains a challenge. Normally, researchers use an AFM-based method to directly measure nano-materials’ piezoelectric strain coefficients. But, the extremely small piezoelectric deformation, the influence from the parasitic electrostatic force, and the environmental noise make the measurement results questionable. In this paper, a resonant piezo-force microscopy method was used to accurately measure the piezoelectric deformation from 1D piezoelectric nanofibers. During the experiment, the AFM tip was brought into contact with the piezoelectric sample and set to work at close to its first resonant frequency. A lock-in amplifier was used to pick up the sample’s deformation signal at the testing frequency. By using this technique, the piezoelectric strain constant d33 of the Lead Zirconate Titanate (PZT) nanofiber with a diameter of 76 nm was measured. The result showed that d33 of this PZT nanofiber was around 387 pm/V. Meanwhile, by tracking the piezoelectric deformation phase image, domain structures inside PZT nanofibers were identified.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3