A Unique Crustacean-Based Chitin Platform to Reduce Self-Aggregation of Polysaccharide Nanofibers

Author:

Londoño-Zuluaga CarolinaORCID,Jameel Hasan,Gonzalez Ronalds,Nellenbach Kimberly,Brown AshleyORCID,Yang GuihuaORCID,Lucia LucianORCID

Abstract

Every year, over 8 million tons of crustacean shells are discarded. However, there exists an opportunity for valorizing the chitin and calcium carbonate part of the composition of the shells. Our study revealed crustacean chitin reduces self-aggregation effects. It was shown that crustacean-based nanofibers alone or added to cellulose offer unprecedented reductions in viscosity even after drying to produce foams impossible for cellulose. Polysaccharide nanofibers suffer from increased viscosity from strong hydrogen bonding addressed by the incorporation of crustacean-based nanofibers. The ability of the nanocomposite to overcome self-aggregation and collapse was attributed to organized chitin nanofiber morphology in the crustacean matrix. As a result of enhanced surface area from reduced fiber aggregation, the chitin/crustacean-cellulose blend was tested for a biomedical application requiring a high surface area: coagulation. Preliminary experiments showed the crustacean matrices, especially those containing calcium carbonate, induced blood clotting when 35 s. A materials platform is proposed for bio-based nanofiber production overcoming intractable and difficult-to-address self-aggregation effects associated with polysaccharides.

Funder

NC Biotechnology Center

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3