Low repetition-rate, high-resolution femtosecond transmission electron microscopy

Author:

Flannigan David J.12ORCID,Curtis Wyatt A.12,VandenBussche Elisah J.12,Zhang Yichao12ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA

2. Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, Minnesota 55455, USA

Abstract

The spatial and energy resolutions of state-of-the-art transmission electron microscopes (TEMs) have surpassed 50 pm and 5 meV. However, with respect to the time domain, even the fastest detectors combined with the brightest sources may only be able to reach the microsecond timescale. Thus, conventional methods are incapable of resolving the myriad fundamental ultrafast (i.e., attosecond to picosecond) atomic-scale dynamics. The successful demonstration of femtosecond (fs) laser-based (LB) ultrafast electron microscopy (UEM) nearly 20 years ago provided a means to span this nearly 10-order-of-magnitude temporal gap. While nanometer-picosecond UEM studies of dynamics are now well established, ultrafast Å-scale imaging has gone largely unrealized. Further, while instrument development has rightly been an emphasis, and while new modalities and uses of pulsed-beam TEM continue to emerge, the overall chemical and materials application space has been only modestly explored to date. In this Perspective, we argue that these apparent shortfalls can be attributed to a simple lack of data and detail. We speculate that present work and continued growth of the field will ultimately lead to the realization that Å-scale fs dynamics can indeed be imaged with minimally modified UEM instrumentation and with repetition rates ( frep) below—and perhaps even well below—1 MHz. We further argue that the use of low frep, whether for LB UEM or for chopped/bunched beams, significantly expands the accessible application space. This calls for systematically establishing modality-specific limits so that especially promising technologies can be pursued, thus, ultimately facilitating broader adoption as individual instrument capabilities expand.

Funder

U.S. Department of Energy

National Science Foundation

American Chemical Society Petroleum Research Fund

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3