Optimization of quasi-symmetric stellarators with self-consistent bootstrap current and energetic particle confinement

Author:

Landreman M.1ORCID,Buller S.1,Drevlak M.2

Affiliation:

1. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park Maryland 20742, USA

2. Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany

Abstract

Quasi-symmetry can greatly improve the confinement of energetic particles and thermal plasma in a stellarator. The magnetic field of a quasi-symmetric stellarator at high plasma pressure is significantly affected by the bootstrap current, but the computational cost of accurate stellarator bootstrap calculations has precluded use inside optimization. Here, a new efficient method is demonstrated for optimization of quasi-symmetric stellarator configurations such that the bootstrap current profile is consistent with the geometry. The approach is based on the fact that all neoclassical phenomena in quasi-symmetry are isomorphic to those in axisymmetry. Therefore, accurate formulas for the bootstrap current in tokamaks, which can be evaluated rapidly, can be applied also in stellarators. The deviation between this predicted parallel current and the actual parallel current in the magnetohydrodynamic equilibrium is penalized in the objective function, and the current profile of the equilibrium is included in the parameter space. Quasi-symmetric configurations with significant pressure are thereby obtained with self-consistent bootstrap current and excellent confinement. In a comparison of fusion-produced alpha particle confinement across many stellarators, the new configurations have significantly lower alpha energy losses than many previous designs.

Funder

Fusion Energy Sciences

Simons Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3