An improved gas–liquid–solid coupling model with plastic failure for hydraulic flushing in gassy coal seam and application in borehole arrangement

Author:

Yang LeiORCID,Fan ChaojunORCID,Wen Haiou,Luo Mingkun,Sun Hao,Jia Ce

Abstract

Hydraulic flushing can increase the efficiency of gas extraction by artificially modifying the coal reservoir. Considering the plastic failure of coal mass, an improved gas–liquid–solid coupling model for hydraulic flushing and gas extraction is constructed. The parameter evolution in the hydraulic flushing process was numerically investigated to determine the optimal borehole arrangement of hydraulic flushing. The results show that the relative permeability of gas gradually increases with the initial dewatering. The gas rates of both regular extraction and hydraulic flushing enhanced extraction show an increasing–decreasing trend. An increased and delayed peak gas rate is observed comparing with the regular extraction, caused by the hydraulic flushing induced new fractures. The area around of borehole is divided into the failure zone, the plastic softening zone, and the elastic zone after hydraulic flushing. The failure zone has the greatest increase in coal permeability, followed by the plastic softening zone, while the elastic zone keeps no significant change. The larger difference between the horizontal stress and vertical stress, the more obvious the elliptical shape of the permeability change area near the borehole, as well as the pressure drop in the elliptical zone. With the increase in the hydraulic flushing radius, the permeability increasing zone and gas pressure decreasing zone gradually increase. Subsequently, the equivalent effective radius and equivalent influencing radius were obtained, as well as the optimal borehole spacing for hydraulic flushing by cross-layer drilling. Finally, the optimal borehole spacing is obtained for different borehole diameters and efficient extraction times. These provide a theoretical guidance for field application of hydraulic flushing in a low-permeable coal seam.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3