The effects of supercritical CO2 transient high-pressure impact on coal pore structure characteristics

Author:

Wang Wendi,Ji HuaijunORCID,Hu Shaobin,Liu Xu,Zhang Chenglong

Abstract

The impact of supercritical CO2 transient high-pressure fracturing on coal pore structure is studied here. This examination uses a CO2 fracturing test platform to obtained coal samples at fracturing pressures of 22.6, 26.7, and 30.6 MPa, and we investigated the effects of CO2 transient high-pressure impacts on the pore structure of the coal by means of low-temperature N2 adsorption experiments and CO2 adsorption experiments. The results demonstrate that the specific surface area of the coal samples increased by 60.4%, 200.7%, and 92.6%, and the cumulative total pore volume increased by 56%, 267%, and 77.8% under the pressure impacts of 22.6, 26.7, and 30.6 MPa, with a significant increase in the number of pores. The original pore morphology of coal can be changed by the supercritical CO2 transient high-pressure impact, and the creation of new pores across the whole pore diameter section can be catalyzed. The impact fracturing on the pore structure is mainly attributed to the impact of supercritical CO2 and extraction. The meso-pores and macro-pores of the coal are further expanded by the impact of supercritical CO2, while the micro-pores with chemical properties are primarily modified by the extraction. An impact pressure of 26.7 MPa has a more pronounced effect on the expansion of meso-pores and macro-pores, and its effect on micro-pores is less significant compared to that of the other two fracturing samples. Therefore, it is possible that a specific fracturing pressure can more effectively expand meso-pores and macro-pores while reducing the impact on micro-pores.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference34 articles.

1. The controlling factors of coalbed reservoir permeability and CBM development strategy in China;Geol. Rev.,2017

2. Research and consideration on deep coal mining and critical mining depth;Meitan Xuebao/J. China Coal Soc.,2012

3. Multiphysics of carbon dioxide sequestration in coalbeds: A review with a focus on geomechanical characteristics of coal;J. Rock Mech. Geotech. Eng.,2016

4. Simulation of coal microstructure characteristics under temperature-pressure coupling based on micro-computer tomography;J. Nat. Gas Sci. Eng.,2021

5. Experimental study on the fractal pattern of a coal body pore structure around a water injection bore;J. Energy Resour. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3