Facilitatingab initioconfigurational sampling of multicomponent solids using an on-lattice neural network model and active learning

Author:

Kasamatsu Shusuke1ORCID,Motoyama Yuichi2ORCID,Yoshimi Kazuyoshi2ORCID,Matsumoto Ushio34,Kuwabara Akihide3ORCID,Ogawa Takafumi3ORCID

Affiliation:

1. Academic Assembly (Faculty of Science), Yamagata University, 1-4-12 Kojirakawa, Yamagata-shi, Yamagata 990-8560, Japan

2. The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan

3. Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan

4. Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

We propose a scheme for ab initio configurational sampling in multicomponent crystalline solids using Behler–Parinello type neural network potentials (NNPs) in an unconventional way: the NNPs are trained to predict the energies of relaxed structures from the perfect lattice with configurational disorder instead of the usual way of training to predict energies as functions of continuous atom coordinates. An active learning scheme is employed to obtain a training set containing configurations of thermodynamic relevance. This enables bypassing of the structural relaxation procedure that is necessary when applying conventional NNP approaches to the lattice configuration problem. The idea is demonstrated on the calculation of the temperature dependence of the degree of A/B site inversion in three spinel oxides, MgAl2O4, ZnAl2O4, and MgGa2O4. The present scheme may serve as an alternative to cluster expansion for “difficult” systems, e.g., complex bulk or interface systems with many components and sublattices that are relevant to many technological applications today.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Fusion Oriented Research for Disruptive Science and Technology

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3