Thermal conductance of interfaces between titanium nitride and group IV semiconductors at high temperatures

Author:

Khan Samreen1ORCID,Shi Xinping1ORCID,Feser Joseph2ORCID,Wilson Richard1ORCID

Affiliation:

1. University of California Riverside 1 , Riverside, California 92521, USA

2. University of Delaware 2 , Newark, Delaware 19716, USA

Abstract

Measuring the temperature dependence of material properties is a standard method for better understanding the microscopic origins for that property. Surprisingly, only a few experimental studies of thermal boundary conductance at high temperatures exist. This lack of high temperature data makes it difficult to evaluate competing theories for how inelastic processes contribute to thermal conductance. To address this, we report time domain thermoreflectance measurements of the thermal boundary conductance for TiN on diamond, silicon-carbide, silicon, and germanium between 120 and 1000 K. In all systems, the interface conductance increases monotonically without stagnating at higher temperatures. For TiN/SiC interfaces, G ranges from 330 to 1000 MW/m2-K, with a room temperature conductance of 750 MW/m2-K. The interface conductance for TiN/diamond ranges from 140 to 950 MW/m2-K. Notably, for all four interfacial systems, the conductance continues to increase with temperature even after all phonon modes in the vibrationally soft material are thermally excited. This observation suggests that inelastic processes are significant contributors to the thermal conductance in all four interfacial systems, regardless of whether the materials forming the interface are vibrationally similar or dissimilar. Our study fills a notable gap in the literature for how interfacial conductance evolves at high temperatures and tests burgeoning theories for the role of inelastic processes in interfacial thermal transport.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3