Photoluminescence from InSb1−xBix alloys at extended wavelengths on InSb

Author:

White R. C.1ORCID,Nordin L. J.2ORCID,Muhowski A. J.1ORCID,Wasserman D.1ORCID,Bank S. R.1ORCID

Affiliation:

1. Microelectronics Research Center and the Electrical and Computer Engineering Department, The University of Texas at Austin, Austin, Texas 78758, USA

2. Geballe Laboratory for Advanced Materials, Stanford University, Palo Alto, California 94305, USA

Abstract

The incorporation of dilute concentrations of bismuth into traditional III–V alloys produces significant reductions in bandgap energy presenting unique opportunities in strain and bandgap engineering. However, the disparity between the ideal growth conditions for the host matrix and those required for substitutional bismuth incorporation has caused the material quality of these III–V–Bi alloys to lag behind that of conventional III–V semiconductors. InSb1−xBix, while experimentally underexplored, is a promising candidate for high-quality III–V–Bi alloys due to the relatively similar ideal growth temperatures for InSb and III–Bi materials. By identifying a highly kinetically limited growth regime, we demonstrate the growth of high-quality InSb1−xBix by molecular beam epitaxy. X-ray diffraction and Rutherford backscattering spectrometry (RBS) measurements of the alloy's bismuth concentration, coupled with smooth surface morphologies as measured by atomic force microscopy, suggest unity-sticking bismuth incorporation for a range of bismuth concentrations from 0.8% to 1.5% as measured by RBS. In addition, the first photoluminescence was observed from InSb1−xBix and demonstrated wavelength extension up to 7.6  μm at 230 K, with a bismuth-induced bandgap reduction of ∼29 meV/% Bi. Furthermore, we report the temperature dependence of the bandgap of InSb1−xBix and observed behavior consistent with that of a traditional III–V alloy. The results presented highlight the potential of InSb1−xBix as an alternative emerging candidate for accessing the longwave-infrared.

Funder

Lockheed Martin

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3