How the dynamics of attachment to the substrate influence stress in metal halide perovskites

Author:

McAndrews Gabriel R.1ORCID,Guo Boyu2ORCID,Morales Daniel A.1ORCID,Amassian Aram2ORCID,McGehee Michael D.134ORCID

Affiliation:

1. Materials Science and Engineering Program, University of Colorado Boulder 1 , 4001 Discovery Drive, Boulder, Colorado 80303, USA

2. Department of Materials Science and Engineering, North Carolina State University 2 , 911 Partners Way, Room 3002, Engineering Building I, Raleigh, North Carolina 27695, USA

3. Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder 3 , 4001 Discovery Drive, Boulder, Colorado 80303, USA

4. Department of Chemical and Biological Engineering, University of Colorado Boulder 4 , Boulder, Colorado 80303, USA

Abstract

Metal halide perovskites have the potential to contribute to renewable energy needs as a high efficiency, low-cost alternative for photovoltaics. Initial power conversion efficiencies are superb, but improvements to the operational stability of perovskites are needed to enable extensive deployment. Mechanical stress is an important, but often misunderstood factor impacting chemical degradation and reliability during thermal cycling of perovskites. In this manuscript, we find that a commonly used equation based on the coefficient of thermal expansion (CTE) mismatch between perovskite and substrate fails to accurately predict residual stress following solution-based film formation. For example, despite similar CTEs there is a 60 MPa stress difference between narrow bandgap “SnPb perovskite” Cs0.25FA0.75Sn0.5Pb0.5I3 and “triple cation perovskite” Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3. A combination of in situ absorbance and substrate curvature measurements are used to demonstrate that partial attachment prior to the anneal can reduce residual stress and explain wide stress variations in perovskites.

Funder

Office of Naval Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3