Piezoelectric energy harvester with outstanding output performance at low frequency vibration based on concentrating force on the piezoelectric element by parallel springs

Author:

Hao Yifan1ORCID,Luo Hongzhi1ORCID,Lu Xinyue1,Huang Jiawei1ORCID,Chen Hang1,Yang Tongqing1ORCID

Affiliation:

1. Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China

Abstract

This paper proposes a piezoelectric energy harvester that concentrates force on the piezoelectric element by parallel springs. When vibrating, the force exerted by the mass is released at three equal points on the surface of the brass substrate through three parallel springs. This concentrated release of energy through the spring amplification effect facilitates large deformation of the piezoelectric ceramic sheet, resulting in a higher charge output. The results show that under the combined action of a 14 g annular hollow mass and a 0.3 mm wire diameter stainless steel spring, the energy harvester based on the lead zirconate titanate ceramic exhibited an outstanding output power of 1.0–32.1 mW at a low resonance frequency with acceleration amplitudes of 0.5–3 g (1 g = 9.8 m/s2). More importantly, to match the vibration frequency of the actual environment, this paper optimized the structure of the harvester and proposed that the harvester can be designed by selecting the weight of the mass block, the parameters and number of springs, and the shape of the brass substrate. The energy harvester designed in this study is expected to capture energy from low-frequency natural environments and exhibit outstanding output performance, which can provide guidelines for future efforts in this direction.

Funder

National Key R&D Program of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3