A heaving system with two separated oscillating water column units for wave energy conversion

Author:

Wang Chen1ORCID,Zheng Siming12ORCID,Zhang Yongliang1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, 100084 Beijing, China

2. School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom

Abstract

A theoretical model based on the linear potential theory is presented for two heaving oscillating water column (OWC) devices separated by a gap. The model includes relative motion and phase control between the devices and trapped water columns, and the hydrodynamic performance of the dual-OWC system thence evaluated. Matching conditions are employed along the common interfaces, and the power take-off model and motion equations of the OWC devices are incorporated into the solution procedure. At the top of each chamber, a Wells turbine is installed to extract wave power. To achieve the optimal overall power extraction performance, a numerical strategy of successive approximation is utilized to seek the optimal turbine damping combinations for the separated units. The effects of lip-wall draft and chamber breadth on the performance of a fully-free heaving dual-OWC system are explored. In view of the deficiency of a fully-free heaving system, two alternative optimization strategies are proposed, one focusing on the control of relative motion and phase between the water columns and the heaving devices, the other on utilizing resonance phenomenon inside the gap, achieved by tuning imposed linear spring constants and gap distance, respectively. It is shown that the control between heave motion of devices and water columns inside the chambers is beneficial for extracting more power over a broader range of wave frequencies. Moreover, enhanced extraction is likely over a wider range of wave conditions when the gap distance to wavelength triggers a sloshing mode inside the gap.

Funder

National Natural Science Foundation of China

State Key Laboratory of Hydro-science and Engineering

China Communication Construction Co.Ltd.

Open Research Fund Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3