Electric field tunable multi-state tunnel magnetoresistances in 2D van der Waals magnetic heterojunctions

Author:

Liu B.1ORCID,Ren X. X.1ORCID,Zhang Xian2,Li Ping1ORCID,Dong Y.3,Guo Zhi-Xin1ORCID

Affiliation:

1. State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum System, School of Materials Science and Engineering, Xi'an Jiaotong University 1 , Xi'an, Shaanxi 710049, China

2. Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, College of Mechanical and Materials Engineering, Xi'an University 2 , Xi'an 710065, China

3. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University 3 , Xi'an 710032, China

Abstract

Magnetic tunnel junction (MTJ) based on van der Waals (vdW) magnetic layers has been found to present excellent tunneling magnetoresistance (TMR) property, which has great potential applications in field sensing, nonvolatile magnetic random access memories, and spin logics. Although MTJs composed of multilayer vdW magnetic homojunction have been extensively investigated, the ones composed of vdW magnetic heterojunction are still to be explored. Here, we use first-principles approaches to reveal that the magnetic heterojunction MTJs have much more distinguishable TMR values than the homojunction ones. In the MTJ composed of bilayer CrI3/bilayer Cr2Ge2Te6 heterojunction, we find there are eight stable magnetic states, leading to six distinguishable electronic resistances. As a result, five sizable TMRs larger than 300% can be obtained (the maximum TMR is up to 620 000%). Six distinguishable memories are obtained, which is two times larger than that of a four-layered homojunction MTJ. The underlying relationships among magnetic state, spin-polarized band structures, and transmission spectra are further revealed to explain the multiple TMR values. We also find that the magnetic states, and thus TMRs, can be efficiently modulated by an external electric field. This study opens an avenue to the design of high-performance MTJ devices based on vdW heterojunctions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3