Integrated Resonant Electro‐Optic Comb Enabled by Platform‐Agnostic Laser Integration

Author:

Luntadila Lufungula Isaac12ORCID,Shams‐Ansari Amirhassan3ORCID,Renaud Dylan3ORCID,Op de Beeck Camiel12ORCID,Cuyvers Stijn12ORCID,Poelman Stijn12,Billet Maximilien12ORCID,Roelkens Gunther12ORCID,Lončar Marko3ORCID,Kuyken Bart12ORCID

Affiliation:

1. Photonics Research Group Department of information technology (INTEC) Ghent University‐imec Ghent 9052 Belgium

2. Center for Nano‐ and Biophotonics (NB‐Photonics) Ghent University‐imec Ghent 9052 Belgium

3. John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts MA 02138 USA

Abstract

AbstractThe field of integrated photonics has significantly impacted numerous fields including communication, sensing, and quantum physics owing to the efficiency, speed, and compactness of its devices. However, the reliance on off‐chip bulk lasers compromises the compact nature of these systems. While silicon photonics and III‐V platforms have established integrated laser technologies, emerging demands for ultra‐low optical loss, wider bandgaps, and optical nonlinearities necessitate other platforms. Developing integrated lasers on less mature platforms is arduous and costly due to limited throughput or unconventional process requirements. In response, a novel platform‐agnostic laser integration technique is proposed, utilizing a singular design and process flow, applicable without modification to a diverse range of platforms. Leveraging a two‐step micro‐transfer printing method, nearly identical laser performance is achieved across platforms with refractive indices between 1.7 and 2.5. Experimental validation demonstrates strikingly similar laser characteristics between devices processed on lithium niobate and silicon nitride platforms. Furthermore, the integration of a laser with a resonant electro‐optic comb generator on the thin‐film lithium niobate platform is showcased, producing over 80 comb lines spanning 12 nm. This versatile technique transcends platform‐specific limitations, facilitating applications like microwave photonics, handheld spectrometers, and cost‐effective Lidar systems, across multiple platforms.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Defense Sciences Office, DARPA

Air Force Office of Scientific Research

European Research Council

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3