Smoothed particle hydrodynamics physically reconsidered: The relation to explicit large eddy simulation and the issue of particle duality

Author:

Okraschevski M.1ORCID,Buerkle N.1ORCID,Koch R.1,Bauer H.-J.1ORCID

Affiliation:

1. Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany

Abstract

In this work, we will identify a novel relation between Smoothed Particle Hydrodynamics (SPH) and explicit large eddy simulation using a coarse-graining method from non-equilibrium molecular dynamics. While the current literature points at the conclusion that characteristic SPH issues become restrictive for subsonic turbulent flows, we see the potential to mitigate these SPH issues by explicit subfilter stress modeling. We verify our theory by various simulations of homogeneous, isotropic turbulence at [Formula: see text] and compare the results to a direct numerical simulation [T. Dairay et al., “Numerical dissipation vs subgrid-scale modelling for large eddy simulation,” J. Comput. Phys. 337, 252–274 (2017)]. Although the simulations substantiate our theory, we see another issue arising, which is conceptually rooted in the particle itself, termed as particle duality. Finally, we conclude our work by acknowledging SPH as a coarse-graining method for turbulent flows, highlighting its capabilities and limitations.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3