Author:
Okraschevski Max,Mesquita Léo C. C.,Koch Rainer,Mastorakos Epaminondas,Bauer Hans-Jörg
Abstract
AbstractHigh altitude relight is a matter of increasing importance for aero engine manufacturers, in which combustion plays literally a vital role. In this paper we want to evaluate the predictive capability of a combined Smoothed Particle Hydrodynamics (SPH) and Large Eddy Simulation with Conditional Moment Closure (LES-CMC) approach for a spray combustion process at these extreme conditions. The focus is on the SPH modelling of the kerosene primary atomization, the extraction of realistic spray boundary conditions for LES-CMC and the effect of the spray on combustion. Interestingly, it will be demonstrated that the fragment size distributions resulting from the airblast atomization are characterized by bimodal behaviour during the relight process and that small and large fragments differ significantly in their dynamical behavior. This is shown to affect the combustion in the Central Recirculation Zone (CRZ). Very large fragments are even able to supersede the flame from the CRZ, such that endothermic pyrolysis becomes dominant, but simultaneously essential to sustain and stabilize the remaining flame with reactive pyrolysis species. The study proves the ability of our methodology for extreme operating conditions, in which experimental insights are hardly possible.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献