The effect of humidity on the discharge mode transition of air discharge plasma

Author:

Xi Wang1,Luo Santu1,Liu Dingxin1ORCID,Wang Zifeng1ORCID,Liu Zhijie1ORCID,Guo Li1ORCID,Wang Xiaohua1ORCID,Rong Mingzhe1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

Abstract

Cold atmospheric plasma in air commonly operates in the O3 mode and NO x mode, which easily interconvert through a transition mode, depending on discharge conditions. Given that the humidity varies considerably in different weather, it is important to elucidate the effect of humidity on the discharge mode transition, but few studies have been reported thus far. In this study, air plasmas were generated by a surface dielectric barrier discharge with different discharge powers of 6, 9, and 12 W, and the relative humidity of air was controlled at 1.5% (dry air), 40%, or 80% for a comparative study. It was found that an increase in humidity suppressed the production of O3 but promoted that of NO2 when the discharge power was 6 W, whereas it promoted the production of O3 but suppressed that of NO2 when the discharge power was 12 W. This implies that air humidity could have a bidirectional effect on the discharge mode transition, which was validated by experiments with a moderate power of 9 W. In that case, the discharge in dry air maintained the transition mode at a quasi-stable state, but it transited either into the NO x mode when the humidity was 40% or into the O3 mode when the humidity was 80%. A competition between reaction pathways dominated by N2( ν) or water-originated compounds may be the cause, and our findings indicate that the effect of humidity should be taken seriously in the research and development of air discharge plasmas.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3