Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency

Author:

Homola TomášORCID,Prukner VáclavORCID,Hoffer PetrORCID,Šimek MilanORCID

Abstract

Abstract This contribution investigates the effects of duty cycle and mass flow of synthetic air and oxygen on the efficiency of ozone generation in multi-hollow surface dielectric barrier discharge (MSDBD). It discloses that the efficiency of ozone generation in MSDBD is significantly higher compared with standard coplanar DBD, surface DBD and volume DBDs. Ozone production yield reached 205.5 ± 29.1 g (kW h)−1 (40% duty cycle, 8 slm) and 413.91 ± 58.7 g (kW h)−1 (100% duty cycle, 8 slm) at an energy cost of 8.7 and 4.3 eV/molecule for synthetic air and oxygen, respectively. Such high ozone yields arose out of the intrinsic characteristics of MSDBD ceramics, which were efficiently cooled by the flow of the working gas. The amplitude modulation of low-frequency 5 kHz high-voltage sine waveforms facilitates controlled O3 production at a nearly constant rate of yield. Since the correct evaluation of ozone production yield requires precise determination of the discharge power, the concentration of ozone and working gas-flow, considerable attention was paid to measurements of these parameters. It is confirmed and experimentally demonstrated herein that correct determination of discharge power lies with Lissajous figure methods, while the determination of power through the direct integration of product u(t)i(t), where i(t) is measured by Pearson current probe, leads to systematically lower values of calculated power with consequent overestimation of the ozone production yield. The correct determination of discharge power is clearly the key to the proper calculation of ozone production yield and efficiency. Under the DBD discharge conditions presented herein, ozone production yield and efficiency achieved figures as high as 19.5% and 35.2% of theoretical limits recently established for air and oxygen, respectively.

Funder

Grantová Agentura České Republiky

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3