Toward a robust detection of viscous and turbulent flow regions using unsupervised machine learning

Author:

Otmani Kheir-Eddine1ORCID,Ntoukas Gerasimos1ORCID,Mariño Oscar A.1ORCID,Ferrer Esteban12ORCID

Affiliation:

1. ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid 1 , Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain

2. Center for Computational Simulation, Universidad Politécnica de Madrid 2 , Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

Abstract

We propose an invariant feature space for the detection of viscous-dominated and turbulent regions (i.e., boundary layers and wakes). The developed methodology uses the principal invariants of the strain and rotational rate tensors as input to an unsupervised Machine Learning Gaussian mixture model. The selected feature space is independent of the coordinate frame used to generate the processed data, as it relies on the principal invariants of the strain and rotational rate, which are Galilean invariants. This methodology allows us to identify two distinct flow regions: a viscous-dominated, rotational region (a boundary layer and a wake region) and an inviscid, irrotational region (an outer flow region). We have tested the methodology on a laminar and a turbulent (using Large Eddy Simulation) case for flows past a circular cylinder at Re = 40 and Re = 3900 and a laminar flow around an airfoil at Re=1×105. The simulations have been conducted using a high-order nodal Discontinuous Galerkin Spectral Element Method. The results obtained are analyzed to show that Gaussian mixture clustering provides an effective identification method of viscous-dominated and rotational regions in the flow. We also include comparisons with traditional sensors to show that the proposed clustering does not depend on the selection of an arbitrary threshold, as required when using traditional sensors.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Ministerio de Ciencia e Innovación

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference56 articles.

1. Machine-learning methods for computational science and engineering;Computation,2020

2. Machine learning for fluid mechanics;Annu. Rev. Fluid Mech.,2020

3. Classification techniques in machine learning: Applications and issues;J. Basic Appl. Sci.,2017

4. R. Vinuesa and S. L. Brunton, “The potential of machine learning to enhance computational fluid dynamics,” arXiv:2110.02085 (2021).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3