Machine-Learning Methods for Computational Science and Engineering

Author:

Frank Michael,Drikakis Dimitris,Charissis VassilisORCID

Abstract

The re-kindled fascination in machine learning (ML), observed over the last few decades, has also percolated into natural sciences and engineering. ML algorithms are now used in scientific computing, as well as in data-mining and processing. In this paper, we provide a review of the state-of-the-art in ML for computational science and engineering. We discuss ways of using ML to speed up or improve the quality of simulation techniques such as computational fluid dynamics, molecular dynamics, and structural analysis. We explore the ability of ML to produce computationally efficient surrogate models of physical applications that circumvent the need for the more expensive simulation techniques entirely. We also discuss how ML can be used to process large amounts of data, using as examples many different scientific fields, such as engineering, medicine, astronomy and computing. Finally, we review how ML has been used to create more realistic and responsive virtual reality applications.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3