A photonic integrated chip platform for interlayer exciton valley routing

Author:

Kumar Mandal Kishor1ORCID,Gupta Yashika1ORCID,Kumar Brijesh1ORCID,Sohoni Mandar2,Venu Gopal Achanta3ORCID,Kumar Anshuman1ORCID

Affiliation:

1. Laboratory of Optics of Quantum Materials, Department of Physics, Indian Institute of Technology Bombay 1 , Mumbai 400076, India

2. School of Applied and Engineering Physics, Cornell University 2 , Ithaca, New York 14853, USA

3. Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research 3 , Homi Bhabha Road, Mumbai 400005, India

Abstract

Interlayer excitons in two-dimensional semiconductor heterostructures show suppressed electron–hole overlap resulting in longer radiative lifetimes as compared to intralayer excitons. Such tightly bound interlayer excitons are relevant for important optoelectronic applications, including light storage and quantum communication. Their optical accessibility is, however, limited due to their out-of-plane transition dipole moment. In this work, we design a complementary metal–oxide–semiconductor-compatible photonic integrated chip platform for enhanced near-field coupling of these interlayer excitons with the whispering gallery modes of a microresonator, exploiting the high confinement of light in a small modal volume and high-quality factor of the system. Our platform allows for highly selective emission routing via engineering an asymmetric light transmission that facilitates efficient readout and channeling of the excitonic valley state from such systems.

Funder

Science and Engineering Research Board

Mission on Nano Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3