Resonant multiphoton processes and excitation limits to structural dynamics

Author:

Francis William J. C.1ORCID,Grewal Harmanjot1ORCID,Wainwright Alexander A. C.1ORCID,Yang Xuchun23ORCID,Olivucci Massimo23ORCID,Miller R. J. Dwayne1ORCID

Affiliation:

1. Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada and Department of Physics, University of Toronto, 60 St. George Street 1 , Toronto, Ontario M5S 3J1, Canada

2. Department of Chemistry, Bowling Green State University 2 , Overman Hall, Bowling Green, Ohio 43403, USA

3. Department of Biotechnology, Chemistry and Pharmacy, University of Siena 3 , via Aldo Moro 2, Siena I-53100, Italy

Abstract

Understanding the chemical reactions that give rise to functional biological systems is at the core of structural biology. As techniques are developed to study the chemical reactions that drive biological processes, it must be ensured that the reaction occurring is indeed a biologically relevant pathway. There is mounting evidence indicating that there has been a propagation of systematic error in the study of photoactive biological processes; the optical methods used to probe the structural dynamics of light activated protein functions have failed to ensure that the photoexcitation prepares a well-defined initial state relevant to the biological process of interest. Photoexcitation in nature occurs in the linear (one-photon per chromophore) regime; however, the extreme excitation conditions used experimentally give rise to biologically irrelevant multiphoton absorption. To evaluate and ensure the biological relevance of past and future experiments, a theoretical framework has been developed to determine the excitation conditions, which lead to resonant multiphoton absorption (RMPA) and thus define the excitation limit in general for the study of structural dynamics within the 1-photon excitation regime. Here, we apply the theoretical model to bacteriorhodopsin (bR) and show that RMPA occurs when excitation conditions exceed the linear saturation threshold, well below typical excitation conditions used in this class of experiments. This work provides the guidelines to ensure excitation in the linear 1-photon regime is relevant to biological and chemical processes.

Funder

Natural Sciences and Engineering Research Council of Canada

National Science Foundation

Amaldi Research Center

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3