Mode transformation and interaction in vortex-induced vibration of laminar flow past a circular cylinder

Author:

Cheng Zhi1ORCID,Lien Fue-Sang1ORCID,Yee Eugene1,Zhang Ji Hao1

Affiliation:

1. Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

An investigation of the mode transformation and interaction underlying the behavior of vortex-induced vibration (VIV) of a flow past a circular cylinder elastically mounted on a linear spring is conducted using a high-fidelity full-order model (FOM) based on computational fluid dynamics (CFD), a reduced-order model (ROM), and a dynamic mode decomposition (DMD) of the velocity. A reduced-order model for the fluid dynamics is obtained using the eigensystem realization algorithm (ERA), which is subsequently coupled to a linear structural equation to provide a state space model for the coupled VIV system, in order to provide a simplified computationally inexpensive mathematical representation of the system. This methodology is used to study the dynamics of laminar flows past an elastically mounted circular cylinder with Reynolds number Re ranging from 20 to 180, inclusive. The results of the simulations conducted using FOM/CFD and ROM/ERA, in conjunction with the power spectral analysis and DMD, are used to identify the characteristic natural frequencies and the growth/decay of various modes (including the complex interactions between the myriad wake modes and the structural mode) of the VIV system as a function of the Reynolds number and the reduced natural frequency Fs(or, equivalently, the reduced velocity Ur). A detailed analysis of the distribution of the eigenvalues of the transfer (or, system) matrix of the reduced VIV system shows that the frequency range of the lock-in can be partitioned into resonance and flutter lock-in regimes. The resonance lock-in (lower branch of the VIV response) dominates the fluid-structure interaction. Furthermore, it is shown that when the structural natural frequency is close to one of the eigenfrequencies associated with the wake modes, resonance lock-in (rather than flutter lock-in) will be the primary mechanism governing the VIV response even though the real part of the eigenvalues associated with structural mode is positive. With increasing Reynolds number, the instability of each wake mode is enhanced resulting in a transformation of the wake modes interacting with the structural mode. It is suggested herein that the weakened interaction between the wake modes and the structural mode at Re =  180 (associated with the greater separation between the root loci of the modes) results in the premature termination of the resonance lock-in at [Formula: see text] with increasing Ur. The DMD and power spectral analysis of the time series of the transverse displacement and lift coefficient are used to support the results obtained from ROM/ERA and, more specifically, to provide a clear demonstration of the balanced interaction between the wake modes and the structural mode. This result is used to explain the beating phenomenon, which occurs in the initial branch and the significant lag time that arises between the initial branch and the occurrence of a fully developed response in the lower branch.

Funder

Natural Sciences and Engineering Research Council of Canada

Compute Canada

CF Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3