Internal flow and vibration characteristics of axial flow check valves based on fluid-structure interaction analysis

Author:

Zhang Guang1,Hu Run Hua1,Chen De Sheng1,Lin Zhe1ORCID

Affiliation:

1. Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Axial flow check valves are primarily employed to regulate the unidirectional flow of fluids within pipelines, preventing backflow or reverse flow. The design of this type of check valve ensures its opening in the direction of fluid flow and closing in the case of reverse flow, thereby ensuring that fluid within the pipeline system can only move in the predetermined direction. This paper establishes a three-dimensional physical model of the axial flow check valve with the length of 2050 mm, the height of 2200 mm and the inlet/outlet diameter of 1716 mm. Dynamic characteristics of the flow field during the closing process of axial flow check valve under different pressure difference were studied using dynamic mesh technology and User Defined Function. The vibration of the valve stem of the axial flow check valve was predicted and analyzed through fluid-structure coupling. Additionally, a fluid-structure coupled approach is employed to predict and analyze the vibration of the valve stem in axial flow check valves. The results indicate that with an increase in the pressure difference at the inlet and outlet, the time required for the check valve to close decreases, leading to an acceleration in the valve disc’s velocity. Simultaneously, the fluid forces exerted by the flow field on the valve stem the increase, resulting in more significant vibrations. Among these vibrations, the first three natural modes have the most substantial impact on the valve stem. To prevent damage to the valve stem, efforts should be made to minimize the influence of these first three modes on axial flow check valves. This study provides valuable recommendations and support for preventing damage to the valve stem in operational scenarios involving axial flow check valves.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3