Accurate vertical nanoelectromechanical measurements

Author:

Proksch R.1ORCID,Wagner R.2ORCID,Lefever J.1ORCID

Affiliation:

1. Asylum Research, an Oxford Instruments Company 1 , Santa Barbara, California 93117, USA

2. School of Mechanical Engineering, Purdue University 2 , West Lafayette, Indiana 47907, USA

Abstract

Piezoresponse Force Microscopy (PFM) is capable of detecting strains in piezoelectric materials down to the picometer range. Driven by diverse application areas, numerous weaker electromechanical materials have emerged. The smaller signals associated with them have uncovered ubiquitous crosstalk challenges that limit the accuracy of measurements and that can even mask them entirely. Previously, using an interferometric displacement sensor (IDS), we demonstrated the existence of a special spot position immediately above the tip of the cantilever, where the signal due to body-electrostatic (BES) forces is nullified. Placing the IDS detection spot at this location allows sensitive and BES artifact-free electromechanical measurements. We denote this position as xIDS/L=1, where xIDS is the spot position along the cantilever and L is the distance between the base and tip. Recently, a similar approach has been proposed for BES nullification for the more commonly used optical beam deflection (OBD) technique, with a different null position at xOBD/L≈0.6. In the present study, a large number of automated, sub-resonance spot position dependent measurements were conducted on periodically poled lithium niobate. In this work, both IDS and OBD responses were measured simultaneously, allowing direct comparisons of the two approaches. In these extensive measurements, for the IDS, we routinely observed xIDS/L≈1. In contrast, the OBD null position ranged over a significant fraction of the cantilever length. Worryingly, the magnitudes of the amplitudes measured at the respective null positions were typically different, often by as much as 100%. Theoretically, we explain these results by invoking the presence of both BES and in-plane forces electromechanical forces acting on the tip using an Euler–Bernoulli cantilever beam model. Notably, the IDS measurements support the electromechanical response of lithium niobate predicted with a rigorous electro-elastic model of a sharp PFM tip in the strong indentation contact limit [deff≈12pm/V, Kalinin et al., Phys. Rev. B 70, 184101 (2004)].

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3