Effect of ventilation and climatic conditions on COVID-19 transmission through respiratory droplet transport via both airborne and fomite mode inside an elevator

Author:

Pal Anish1,Biswas Riddhideep1,Sarkar Sourav1ORCID,Mukhopadhyay Achintya1ORCID

Affiliation:

1. Department of Mechanical Engineering, Jadavpur University, Kolkata, India

Abstract

A numerical analysis using OpenFOAM has been performed in this work to investigate the infection risk due to droplet dispersal in an enclosed environment resembling an elevator, since infection risk in such confined places is very high. The effect of two scenarios on droplet dispersal, namely, the quiescent and the fan-driven ventilation, both subjected to various climatic conditions (of temperature and humidity) ranging from cold–humid (15 °C, 70% relative humidity) to hot–dry (30 °C, 30% relative humidity) have been studied. A risk factor derived from a dose–response model constructed upon the temporally averaged pathogen quantity existing around the commuter's mouth is used to quantify the risk of infection through airborne mode. It is found that the hot, dry quiescent scenario poses the greatest threat of infection (spatio-averaged risk factor 42%), whereas the cold–humid condition poses the least risk of infection (spatio-averaged risk factor 30%). The proper fan speed is determined for the epidemiologically safe operation of the elevator. The fan ventilation scenario with 1100 RPM (having a spatio-averaged risk factor of 10%) decreases the risk of infection by 67% in a hot, dry climatic condition as compared to a quiescent scenario and significantly in other climatic ambiences as well. The deposition potential of aerosolized droplets in various parts of the respiratory tract, namely, the extrathoracic and the alveolar and bronchial regions, has been analyzed thoroughly because of the concomitant repercussions of infection in various depths of the respiratory region. In addition, the airborne mode of infection and the fomite mode of infection (infection through touch) have also been investigated for both the ventilation scenarios.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3