Affiliation:
1. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences 1 , Beijing 100083, China
2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences 2 , Beijing 100049, China
Abstract
We have investigated the recrystallization behavior of the argon (Ar) bubble-rich amorphous germanium (a-Ge) by utilizing the excimer laser annealing (ELA) in comparison with the conventional furnace annealing (FA). We demonstrate that the ELA can efficiently suppress the Ar bubbles to have good recrystallization of a-Ge in sharp contrast to the conventional FA treatment where the bubble-rich a-Ge can only be getting partial recrystallization with many dislocations and stacking faults. Transmission electron microscopy results exhibit that ELA can transform the Ar implantation-induced damaged layer into a fully crystalline matrix containing no visible defects except isolated bubbles in a low density. We reveal the critical role of the Ar bubbles played in the recrystallization behavior of the a-Ge by comparing the two types of annealing methods. This finding provides a new routine to suppress the implantation-induced noble-gas bubbles in semiconductors to solve the issue of the high-quality regrowth of the noble–gas implanted layer.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Key Research Program of Frontier Science, Chinese Academy of Sciences
Strategic Priority Research Program of the Chinese Academy of Sciences
CAS Project for Young Scientists in Basic Research
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献