Excimer laser annealing suppresses the bubbles in the recrystallization of argon-implantation induced amorphous germanium

Author:

Wen Shu-Yu12ORCID,He Li1ORCID,Zhu Yuan-Hao12ORCID,Luo Jun-Wei12ORCID

Affiliation:

1. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences 1 , Beijing 100083, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences 2 , Beijing 100049, China

Abstract

We have investigated the recrystallization behavior of the argon (Ar) bubble-rich amorphous germanium (a-Ge) by utilizing the excimer laser annealing (ELA) in comparison with the conventional furnace annealing (FA). We demonstrate that the ELA can efficiently suppress the Ar bubbles to have good recrystallization of a-Ge in sharp contrast to the conventional FA treatment where the bubble-rich a-Ge can only be getting partial recrystallization with many dislocations and stacking faults. Transmission electron microscopy results exhibit that ELA can transform the Ar implantation-induced damaged layer into a fully crystalline matrix containing no visible defects except isolated bubbles in a low density. We reveal the critical role of the Ar bubbles played in the recrystallization behavior of the a-Ge by comparing the two types of annealing methods. This finding provides a new routine to suppress the implantation-induced noble-gas bubbles in semiconductors to solve the issue of the high-quality regrowth of the noble–gas implanted layer.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research Program of Frontier Science, Chinese Academy of Sciences

Strategic Priority Research Program of the Chinese Academy of Sciences

CAS Project for Young Scientists in Basic Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct bandgap emission from strain-doped germanium;Nature Communications;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3