Dielectric relaxation in open circuit: Theory, simulations, and some experiments

Author:

Molinié Philippe1ORCID

Affiliation:

1. Laboratoire de Génie Electrique et Electronique de Paris (GeePs), Université Paris-Saclay, CentraleSupélec, CNRS , Gif-sur-Yvette 91192, France

Abstract

Static charge on insulating material surfaces may be a source of nuisance and an operational requirement in many devices. It induces a potential that evolves with time due to conduction and polarization processes in the dielectric. Here, we analyze, from a theoretical and experimental point of view, the response of an insulator subjected to a charging pulse, within the frame of linear system theory. The surface potential decay and the return voltage after a brief neutralization, which can be easily measured using an electrostatic probe, usually follow time power laws. We consider here a dielectric following the classical Cole–Cole response function in the frequency domain and derive an exact analytic formula for the potential decay, which involves a Mittag–Leffler function. The relationship between the potential decay and the absorption current when a constant voltage is applied on the dielectric is also analyzed. Experiments on several common insulating materials are analyzed according to this theory, using a numerical simulation with a two-cell model. Return voltage measurements are used to check which materials behave according to the linear model. We underline that an equivalent circuit using constant-phase elements, corresponding to several cells following the Cole–Cole response, can also represent dipolar motions in the dielectric as charge hopping between energy-distributed traps.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3