An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay

Author:

Wang Congyu123,Guo Hengyu4,Wang Peng123ORCID,Li Jiawei12,Sun Yihan12,Zhang Dun123

Affiliation:

1. Key Laboratory of Marine Environmental Corrosion and Bio‐fouling Institute of Oceanology Chinese Academy of Sciences Qingdao 266071 China

2. Open Studio for Marine Corrosion and Protection Pilot National Laboratory for Marine Science and Technology (Qingdao) 168 Wenchi Middle Road Qingdao 266237 China

3. University of Chinese Academy of Science Beijing 100049 China

4. Stata Key Laboratory of Power Transmission Equipment and System Security and New Technology Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractThe Internet of Things (IoT) is poised to accelerate the construction of smart cities. However, it requires more than 30 billion sensors to realize the IoT vision, posing great challenges and opportunities for industries of self‐powered sensors. Triboelectric nanogenerator (TENG), an emerging new technology, is capable of easily converting energy from surrounding environment into electricity, thus TENG has tremendous application potential in self‐powered IoT sensors. At present, TENG encounters a bottleneck to boost output for large‐scale commercial use if just by promoting triboelectric charge generation, because the output is decided by the triboelectric charge dynamic equilibrium between generation and decay. To break this bottleneck, the strategy of reducing triboelectric charge decay to enhance TENG output is focused. First, multiple mechanisms of triboelectric charge decay are summarized in detail with basic theoretical principles for future research. Furthermore, recent advances in reducing triboelectric charge decay are thoroughly reviewed and outlined in three aspects: inhibition and application of air breakdown, simultaneous inhibition of air breakdown and triboelectric charge drift/diffusion, and inhibition of triboelectric charge drift/diffusion. Finally, challenges and future research focus are proposed. This review provides reference and guidance for enhancing TENG output.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3