Affiliation:
1. Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
2. Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
Abstract
A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face limited lifetimes and potential environmental issues. Hence, we propose a self-powered DESCD based on TiO2/WO3 dual-band electrochromic material and a ternary dielectric rotating triboelectric nanogenerator (TDR-TENG). The TDR-TENG can convert mechanical energy from the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and 327 nC. The as-prepared TDR-TENG can drive the TiO2/WO3 film to store energy with a high dual-band modulation amplitude of 41.6% in the visible (VIS) region and 84% in the near-infrared (NIR) region, decreasing the indoor–outdoor light–heat interaction and thereby reducing the building energy consumption. The self-powered DESCD demonstrated in this study has multiple functions of energy harvesting, energy storage, and energy saving, providing a promising strategy for the development of self-powered smart windows.
Funder
Anhui Provincial Natural Science Foundation for Distinguished Young Scholars of China
National Natural Science Foundation of China
Research Fund for the Reserve Candidates of Academic and Technical Leaders in Anhui Province of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献