Smoothed particle hydrodynamics simulations of the evaporation of suspended liquid droplets

Author:

Díaz-Damacillo Lamberto1ORCID,Sigalotti Leonardo Di G.1ORCID,Alvarado-Rodríguez Carlos E.2ORCID,Klapp Jaime3ORCID

Affiliation:

1. Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A) 1 , Av. San Pablo 420, Colonia Nueva el Rosario, Alcaldía Azcapotzalco, Mexico City 02128, Mexico

2. Departamento de Ingeniería Química, DCNyE, Universidad de Guanajuato 2 , Noria Alta S/N, Guanajuato 03605, Mexico

3. Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ) 3 , Km. 36.5 Carretera México-Toluca, La Marquesa 52750, Mexico

Abstract

The ordinary evaporation and explosive vaporization of equilibrium, van der Waals, liquid drops subjected to uniform heating at supercritical temperatures are investigated by means of numerical simulations with the aid of a modified version of the DualSPHysics code. The models include the effects of surface tension, thermocapillary forces, mass transfer across the interface, and liquid–vapor interface dynamics by means of a diffuse-interface description. In contrast to previous simulations in this line, a new non-classical source term has been added to the internal energy equation to deal with the vaporization rate through the diffuse interface. This term is related to the diffusion of the latent heat in the interface zone and is, therefore, necessary for a correct physical description of the liquid–vapor interface structure. As the heating temperature increases the drops undergo surface evaporation, nucleation of an interior vapor bubble, nucleation followed by fragmentation of the liquid, and explosive vaporization. Heating at supercritical temperatures brings the drop out of equilibrium and forces it to rapid quenching into either the miscibility gap, where it undergoes surface evaporation by spinodal decomposition, or the metastable region bounded by the binodal and spinodal curves, where it nucleates a vapor bubble. The results also indicate that at comparable heating, drops of lower density experience faster evaporation rates than drops of higher density.

Funder

Consejo Nacional de Ciencia y Tecnología

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3