Investigation on algorithms for simulating large deformation and impact loads

Author:

Zhang ZhenORCID,Tao AifengORCID,Zheng JinhaiORCID,Wang GangORCID,Zhang Baoju

Abstract

It is a challenge to simulate the hydrodynamic problems covering the large deformation of the free surface arising in severe circumstances with intense flow. This paper investigates algorithms based on the moving particle semi-implicit method for simulating large deformation and impact loads. The algorithm discretizes the fluid domain into a series of particles, each representing a part of the fluid. The pressure field calculation is implicit, and the velocity field calculation is explicit. Three models, including the gradient model, source term, and free-surface detection, have been improved and compared to determine which improvement is the best to enhance the accuracy and stability. The enhanced pressure gradient guarantees that momentum conservation can be satisfied. Particle density and velocity divergence are incompressible conditions combined in the mixed source term approach. The arc approach is used in the free-surface judging process. The results show that the combination of three models is the most effective in exploring the problems of hydrodynamic pressure and dam break. The issue of liquid sloshing including roll and sway investigates the effect of the initial distance and time step. It is found that the simulation accuracy of impact pressure can be increased as the initial distance and the time step decrease. Finally, the free surface breaking and liquid splashing phenomena are easily observed, and the method can accurately simulate the massive deformation of the free surface. These findings are helpful for hazard assessments of the various fluid mechanics-related problems.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Basic Research Program

Major Science and Technology Projects of the Ministry of Water Resources

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3