Asymmetrical positioning of cell organelles reflects the cell chirality of mouse myoblast cells

Author:

Hachem Zeina1ORCID,Hadrian Courtney1,Aldbaisi Lina1ORCID,Alkaabi Muslim1ORCID,Wan Leo Q.234ORCID,Fan Jie1ORCID

Affiliation:

1. Department of Natural Sciences, CASL, University of Michigan-Dearborn 1 , Dearborn, Michigan 48128, USA

2. Department of Biomedical Engineering, Rensselaer Polytechnic Institute 2 , Troy, New York 12180, USA

3. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute 3 , Troy, New York 12180, USA

4. Department of Biological Sciences, Rensselaer Polytechnic Institute 4 , Troy, New York 12180, USA

Abstract

Cell chirality is crucial for the chiral morphogenesis of biological tissues, yet its underlying mechanism remains unclear. Cell organelle polarization along multiple axes in a cell body, namely, apical–basal, front–rear, and left–right, is known to direct cell behavior such as orientation, rotation, and migration. Among these axes, the left–right bias holds significant sway in determining the chiral directionality of these behaviors. Normally, mouse myoblast (C2C12) cells exhibit a strong counterclockwise chirality on a ring-shaped micropattern, whereas they display a clockwise dominant chirality under Latrunculin A treatment. To investigate the relationship between multicellular chirality and organelle positioning in single cells, we studied the left–right positioning of cell organelles under distinct cell chirality in single cells via micropatterning technique, fluorescent microscopy, and imaging analysis. We found that on a “T”-shaped micropattern, a C2C12 cell adopts a triangular shape, with its nucleus–centrosome axis pointing toward the top-right direction of the “T.” Several other organelles, including the Golgi apparatus, lysosomes, actin filaments, and microtubules, showed a preference to polarize on one side of the axis, indicating the universality of the left–right asymmetrical organelle positioning. Interestingly, upon reversing cell chirality with Latrunculin A, the organelles correspondingly reversed their left–right positioning bias, as suggested by the consistently biased metabolism and contractile properties at the leading edge. This left–right asymmetry in organelle positioning may help predict cell migration direction and serve as a potential marker for identifying cell chirality in biological models.

Funder

University of Michigan-Dearborn

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3