Minimization of the electrical contact resistance in thin-film thermoelectric device

Author:

Tan Ming1ORCID,Liu Wei-Di23ORCID,Shi Xiao-Lei3,Sun Qiang4ORCID,Chen Zhi-Gang3ORCID

Affiliation:

1. College of Science, Henan Agricultural University 1 , Zhengzhou 450046, China

2. Australian Institute of Biotechnology and Nanotechnology, The University of Queensland 2 , Brisbane, Queensland 4072, Australia

3. School of Chemistry and Physics, Queensland University of Technology 3 , Brisbane, Queensland 4000, Australia

4. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University 4 , Chengdu 610041, China

Abstract

High electrical contact resistance refrains the performance of thin-film thermoelectric devices at the demonstrative level. Here, an additional Ti contact layer is developed to minimize the electrical contact resistance to ∼4.8 Ω in an as-assembled thin-film device with 50 pairs of p–n junctions. A detailed interface characterization demonstrates that the low electrical contact resistance should be mainly attributed to the partial epitaxial growth of Bi2Te3-based thin-film materials. Correspondingly, the superlow electrical contact resistance facilitates the applicability of the out-of-plane thin-film device and results in an ultrahigh surface output power density of ∼81 μW cm−2 at a low temperature difference of 5 K. This study illustrates the Ti contact layer that strengthens the contact between Cu electrodes and Bi2Te3-based thermoelectric thin films mainly through partial epitaxial growth and contributes to high-performance thin-film thermoelectric devices.

Funder

National Natural Science Foundation of China

Henan Agricultural University Start-up Grant

Australian Research Council

Queensland University of Technology Capacity Building program

Innovation Centre for Sustainable Steel Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3