Scalable capillary-pin-fin structure enabled efficient flow boiling

Author:

Luo Kai1ORCID,Foysal Fahim1ORCID,Chang Wei12ORCID,Santi Enrico3ORCID,Li Chen1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina 1 , Columbia, South Carolina 29208, USA

2. Department of Thermal Engineering, Jilin University 2 , Changchun, Jilin 130025, China

3. Department of Electrical Engineering, University of South Carolina 3 , Columbia, South Carolina 29208, USA

Abstract

Flow boiling with dielectric coolant is not only a highly desirable approach for effective electronic cooling but is also notorious for its poor scalability. Most current flow boiling enhancement strategies are based on silicon substrates with footprint areas less than 1 cm2, which greatly limits their applications to large-size electronics. This study developed a scalable channel configuration to facilitate efficient flow boiling on large copper substrates (∼10 cm2), in which the channel walls are formed by porous pin-fin arrays. This type of hybrid capillary wall makes up for the limitation of conventional machining in creating intricate features, making it scalable and feasible for developing large-size, two-phase cold plates. Moreover, effective two-phase separation and sustainable film evaporation have been realized in the current work. As a result, the proposed structure achieved a 512% increase in heat dissipation when the heating area scales up 480% from the silicon microchannels with micro-pin-fin arrays. Experiments showed a base heat flux of 106.1 W/cm2 was dissipated over a heating area of 9.6 cm2 using the dielectric fluid HFE-7100 at a mass flux of 247 kg/m2 s. It outperformed most existing metallic flow boiling heat sinks using the same coolant at a similarly high coefficient of performance as small-size enhanced silicon microchannels.

Funder

Office of Naval Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3