Assessment of advanced xDH@B3LYP methods in describing various potential energy curves driven by π-π, CH/π, and SH/π non-bonded interactions

Author:

Tan Shiqian1,Wang Yizhen1,Zhang Igor Ying1,Xu Xin1

Affiliation:

1. Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China

Abstract

Accurate description of potential energy curves driven by non-bonded interactions remains a great challenge for pure density functional approximations (DFAs). It is because the R−6 decay behavior of dispersion cannot be intrinsically captured by the (semi)-local ingredients and the exact-exchange used in the popular hybrid DFAs. Overemphasizing the accuracy on the equilibrium region for the functional construction would likely deteriorate the overall performance on the other regions of potential energy surfaces. In consequence, the empirical dispersion correction becomes the standard component in DFAs to treat the non-bonded interactions. In this Letter, we demonstrate that without the use of empirical dispersion correction, doubly hybrid approximations, in particular two recently proposed revXYG3 and XYG7 functionals, hold the promise to have a balanced description of non-bonded interactions on the whole potential energy curves for several prototypes of π- π, CH/ π, and SH/ π interactions. The error of revXYG3 and XYG7 for non-bonded interactions is around 0.1 kcal/mol, and their potential energy curves almost coincide with the accurate CCSD(T)/CBS curves.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3