Improving XYG3-type doubly hybrid approximation using self-interaction corrected SCAN density and orbitals via the PZ-SIC framework: The xDH@SCAN(SIC) approach

Author:

Bi Sheng12ORCID,Wang Shirong1ORCID,Zhang Igor Ying134ORCID,Xu Xin134ORCID

Affiliation:

1. Department of Chemistry, Fudan University 1 , Shanghai 200433, People’s Republic of China

2. Research Center for Intelligent Supercomputing, Zhejiang Lab 2 , Hangzhou 311100, People's Republic of China

3. Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University 3 , Shanghai 200433, People’s Republic of China

4. Hefei National Laboratory 4 , Hefei 230088, China

Abstract

XYG3-type doubly hybrid (xDH) approximations have gained widespread recognition for their accuracy in describing a diverse range of chemical and physical interactions. However, a recent study [Song et al., J. Phys. Chem. Lett. 12, 800–807 (2021)] has highlighted the limitation of xDH methods in calculating the dissociation of NaCl molecules. This issue has been related to the density and orbitals used for evaluating the energy in xDH methods, which are obtained from lower-rung hybrid density functional approximations (DFAs) and display substantial density errors in the dissociation limit. In this work, we systematically investigate the influence of density on several challenging datasets and find that xDH methods are less sensitive to density errors compared to semi-local and hybrid DFAs. Furthermore, we demonstrate that the self-interaction corrected SCAN density approach offers superior accuracy compared to the self-consistent SCAN density and Hartree–Fock density approaches, as evidenced by performing charge analysis on the dissociation of heterodimers, such as NaCl and LiF. Building on these insights, we propose a five-parameter xDH method using the SCAN density and orbitals corrected by the PZ-SIC scheme. This new xDH@SCAN(SIC) method provides a balanced and accurate description across a wide range of challenging systems.

Funder

National Natural Science Foundation of China

the Innovation Program for Quantum Science and Technology

the Science Challenge Project

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perdew Festschrift editorial;The Journal of Chemical Physics;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3