Deep reinforcement learning for large-eddy simulation modeling in wall-bounded turbulence

Author:

Kim Junhyuk1ORCID,Kim Hyojin1ORCID,Kim Jiyeon2ORCID,Lee Changhoon12ORCID

Affiliation:

1. Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. School of Mathematics and Computing, Yonsei University, Seoul 03722, Republic of Korea

Abstract

The development of a reliable subgrid-scale (SGS) model for large-eddy simulation (LES) is of great importance for many scientific and engineering applications. Recently, deep learning approaches have been tested for this purpose using high-fidelity data such as direct numerical simulation (DNS) in a supervised learning process. However, such data are generally not available in practice. Deep reinforcement learning (DRL) using only limited target statistics can be an alternative algorithm in which the training and testing of the model are conducted in the same LES environment. The DRL of turbulence modeling remains challenging owing to its chaotic nature, high dimensionality of the action space, and large computational cost. In this study, we propose a physics-constrained DRL framework that can develop a deep neural network-based SGS model for LES of turbulent channel flow. The DRL models that produce the SGS stress were trained based on the local gradient of the filtered velocities. The developed SGS model automatically satisfies the reflectional invariance and wall boundary conditions without an extra training process so that DRL can quickly find the optimal policy. Furthermore, direct accumulation of reward, spatially and temporally correlated exploration, and the pre-training process are applied for efficient and effective learning. In various environments, our DRL could discover SGS models that produce the viscous and Reynolds stress statistics perfectly consistent with the filtered DNS. By comparing various statistics obtained by the trained models and conventional SGS models, we present a possible interpretation of better performance of the DRL model.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3