Reliability assessment of off-policy deep reinforcement learning: A benchmark for aerodynamics

Author:

Berger SandrineORCID,Arroyo Ramo Andrea,Guillet Valentin,Lahire Thibault,Martin Brice,Jardin Thierry,Rachelson Emmanuel,Bauerheim MichaëlORCID

Abstract

Abstract Deep reinforcement learning (DRL) is promising for solving control problems in fluid mechanics, but it is a new field with many open questions. Possibilities are numerous and guidelines are rare concerning the choice of algorithms or best formulations for a given problem. Besides, DRL algorithms learn a control policy by collecting samples from an environment, which may be very costly when used with Computational Fluid Dynamics (CFD) solvers. Algorithms must therefore minimize the number of samples required for learning (sample efficiency) and generate a usable policy from each training (reliability). This paper aims to (a) evaluate three existing algorithms (DDPG, TD3, and SAC) on a fluid mechanics problem with respect to reliability and sample efficiency across a range of training configurations, (b) establish a fluid mechanics benchmark of increasing data collection cost, and (c) provide practical guidelines and insights for the fluid dynamics practitioner. The benchmark consists in controlling an airfoil to reach a target. The problem is solved with either a low-cost low-order model or with a high-fidelity CFD approach. The study found that DDPG and TD3 have learning stability issues highly dependent on DRL hyperparameters and reward formulation, requiring therefore significant tuning. In contrast, SAC is shown to be both reliable and sample efficient across a wide range of parameter setups, making it well suited to solve fluid mechanics problems and set up new cases without tremendous effort. In particular, SAC is resistant to small replay buffers, which could be critical if full-flow fields were to be stored.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3