A study on prenucleation and heterogeneous nucleation in liquid Pb on solid Al using molecular dynamics simulations

Author:

Men H.1ORCID,Fan Z.1ORCID

Affiliation:

1. BCAST, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom

Abstract

In this paper, we investigate prenucleation and heterogeneous nucleation in the liquid Pb/solid Al system as an example of systems with large lattice misfit using molecular dynamics simulation. Solid Pb and Al have a large positive lattice misfit ( f) of 18.2% along the densely packed [110] direction. This study reveals that prenucleation occurs at 600 K (an undercooling of 15 K), and a 2-dimensional (2D) ordered structure forms at the interface with a coincidence site lattice (CSL) between the first Pb and first Al layers. The CSL accommodates the major part of the f, and only a small residual lattice misfit ( fr) of 1.9% remains. The formation of the CSL transforms the original substrate into a considerably potent nucleant, where the first Pb layer becomes the new surface layer of the substrate. At an undercooling of about 22 K, nucleation proceeds by merging 2D ordered structure through structural templating: the second Pb layer is epitaxial to the CSL Pb layer, the third Pb layer largely accommodates the fr, and the fourth Pb layer is a nearly perfect crystalline plane. Further analysis indicates that the interface with the CSL has a lower interfacial energy than with a cube-to-cube orientation relationship. For the first time, we established that the CSL was an effective mechanism to accommodate the f for systems with a large positive misfits. Heterogeneous nucleation is governed not by a single mechanism (misfit dislocations in Turnbull’s model), but instead by various mechanisms depending on f. This study sheds new light on the atomistic mechanism of heterogeneous nucleation.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3