A molecular dynamics study on the boundary between homogeneous and heterogeneous nucleation

Author:

Men Hua1ORCID

Affiliation:

1. BCAST, Brunel University London , Uxbridge, Middlesex UB8 3PH, United Kingdom

Abstract

The large discrepancy among the nucleation kinetics extracted from experimental measurements and computer simulations and the prediction of the classical nucleation theory (CNT) has stimulated intense arguments about its origin in the past decades, which is crucially relevant to the validity of the CNT. In this paper, we investigate the atomistic mechanism of the nucleation in liquid Al in contact with amorphous substrates with atomic-level smooth/rough surfaces, using molecular dynamics (MD) simulations. This study reveals that the slightly distorted local fcc/hcp structures in amorphous substrates with smooth surfaces can promote heterogeneous nucleation through a structural templating mechanism, and on the other hand, homogeneous nucleation will occur at a larger undercooling through a fluctuation mechanism if the surface is rough. Thus, some impurities, previously thought to be impotent, could be activated in the homogeneous nucleation experiments. We further find that the initial growth of the nucleus on smooth surfaces of amorphous substrates is one order of magnitude faster than that in homogeneous nucleation. Both these factors could significantly contribute to the discrepancy in the nucleation kinetics. This study is also supported by a recent study of the synthesis of high-entropy alloy nanoparticles assisted with the liquid metal Ga [Cao et al., Nature 619, 73 (2023)]. In this study, we established that the boundary existed between homogeneous and heterogeneous nucleation, i.e., the structural templating is a general mechanism for heterogeneous nucleation, and in its absence, homogeneous nucleation will occur through the fluctuation mechanism. This study provides an in-depth understanding of the nucleation theory and experiments.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3