NLSI: An innovative method to locate epidemic sources on the SEIR propagation model

Author:

Peng Shui-Lin1ORCID,Wang Hong-Jue2ORCID,Peng Hao1ORCID,Zhu Xiang-Bin1ORCID,Li Xiang3ORCID,Han Jianmin1ORCID,Zhao Dandan1,Hu Zhao-Long1ORCID

Affiliation:

1. College of Computer Science and Technology, Zhejiang Normal University 1 , Jinhua 321004, China

2. School of Information, Beijing Wuzi University 2 , Beijing 101149, China

3. College of Science, National University of Defense Technology 3 , Changsha 410073, China

Abstract

Epidemics pose a significant threat to societal development. Accurately and swiftly identifying the source of an outbreak is crucial for controlling the spread of an epidemic and minimizing its impact. However, existing research on locating epidemic sources often overlooks the fact that epidemics have an incubation period and fails to consider social behaviors like self-isolation during the spread of the epidemic. In this study, we first take into account isolation behavior and introduce the Susceptible-Exposed-Infected-Recovered (SEIR) propagation model to simulate the spread of epidemics. As the epidemic reaches a certain threshold, government agencies or hospitals will report the IDs of some infected individuals and the time when symptoms first appear. The reported individuals, along with their first and second-order neighbors, are then isolated. Using the moment of symptom onset reported by the isolated individuals, we propose a node-level classification method and subsequently develop the node-level-based source identification (NLSI) algorithm. Extensive experiments demonstrate that the NLSI algorithm is capable of solving the source identification problem for single and multiple sources under the SEIR propagation model. We find that the source identification accuracy is higher when the infection rate is lower, and a sparse network structure is beneficial to source localization. Furthermore, we discover that the length of the isolation period has little impact on source localization, while the length of the incubation period significantly affects the accuracy of source localization. This research offers a novel approach for identifying the origin of the epidemic associated with our defined SEIR model.

Funder

National Natural Science Foundation of China

Humanities and Social Science Fund of Ministry of Education of China

Natural Science Foundation of Zhejiang Province

Project of Scientific Research Plan of Beijing Education Commission

Zhejiang Provincial Philosophy and Social Sciences Planning Project

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Locating sources of Szegedy's quantum network;Physical Review E;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3