Key nodes of misinformation source inference: A message-passing-based approach

Author:

Yu Xiaohang1ORCID,Nie Yanyi1ORCID,Li Wenyao1ORCID,Lin Tao1ORCID,Chen Yu2,Gao Feng3,Wang Wei4ORCID

Affiliation:

1. College of Computer Science, Sichuan University, Chengdu 610065, P. R. China

2. School of Intelligent Science and Technology, Sichuan Minzu College, Kangding 626001, P. R. China

3. School of Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China

4. School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China

Abstract

The misinformation spreading in social networks causes unpredictable damage to the networked system, thus inferring the misinformation source is an important research topic in the field of network science and security. Many source inference algorithms have been proposed to find the most likely propagation source through observable snapshot. However, under limited observable conditions, observing different nodes states markedly affects the algorithm’s effectiveness. Yet, we still lack relevant research on which nodes can more accurately assist us in completing source inference. Here, we propose the heuristic message-passing-based algorithm to find the key nodes that can maximize the accuracy of source inference, which uses the average rank of the source in the message-passing method as a measure and performs continuous annealing on this basis to update the set. As a comparison, we propose random selection algorithm as the basic, high-eigenvalue algorithm and high-degree algorithm focused on centrality, and basic message-passing-based algorithm from the perspective of energy entropy in message passing. Through extensive numerical simulation on artificial and real-world networks, compared with other four algorithms, our heuristic message-passing-based algorithm finds the optimal key node set that can more accurately complete source inference. Moreover, it has over 8% higher inference accuracy than other methods in low visibility situations especially.

Funder

The Science and Technology Project of Sichuan Provincial Administration of Traditional Chinese Medicine

Science and Technology Research Program of Chongqing Municipal Education Commission

Program for Youth Innovation in Future Medicine, Chongqing Medical University

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3