Wafer-scale Te thin film with high hole mobility and piezoelectric coefficients

Author:

Tai Xiaochi123ORCID,Zhao Qianru2,Chen Yan13ORCID,Jiao Hanxue24ORCID,Wu Shuaiqin1ORCID,Zhou Dongjie2ORCID,Huang Xinning2,Xiong Ke2ORCID,Lin Tie2ORCID,Meng Xiangjian2ORCID,Wang Xudong2ORCID,Shen Hong2ORCID,Chu Junhao123,Wang Jianlu1234ORCID

Affiliation:

1. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University 1 , Shanghai 200433, China

2. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences 2 , No. 500 Yutian Road, Shanghai 200083, China

3. State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University 3 , Shanghai 200433, China

4. Frontier Institute of Chip and System, Fudan University 4 , Shanghai 200433, China

Abstract

p-type semiconductors are significant for integrated nanoelectronics. Tellurium (Te), a mono-elemental material, is a p-type semiconductor with high mobility. Its outstanding performance renders it widely applicable in the fields of electronics and optoelectronics. However, the wafer-scale fabrication of Te thin films is challenging. In this study, we reported an ion-bean sputtered Te thin film and investigated the effects of annealing temperatures. Annealing-induced crystallization kinetics were assessed through Raman spectroscopy, x-ray diffraction, and atomic force microscopy. After annealing, the film's conductivity increased from 10−5 to 10−4 S and mobility from 18 to 53 cm2 V−1 s−1. Dual AC resonance tracking switching spectroscopy piezoelectric force microscopy is used to investigate piezo/ferroelectric properties. The coercive voltages are −2 and 4 V respectively, and the effective piezoelectric coefficient (d33) is 40 pm/V. Butterfly and phase-switching loops demonstrate its possible ferroelectricity. The Te thin film has potential applications in optoelectronics, nonvolatile memory devices, and neuromorphic computation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3