Improved multivariate multiscale sample entropy and its application in multi-channel data

Author:

Li Weijia12ORCID,Shen Xiaohong2ORCID,Li Yaan1ORCID,Chen Zhe3ORCID

Affiliation:

1. Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology 1 , 710072 Xi’an, Shaanxi, China

2. School of Marine Science and Technology, Northwestern Polytechnical University 2 , Xi’an 710072, China

3. School of Information and Communication, Guilin University of Electronic Technology 3 , Guilin 541004, China

Abstract

Entropy, as a nonlinear feature in information science, has drawn much attention for time series analysis. Entropy features have been used to measure the complexity behavior of time series. However, traditional entropy methods mainly focus on one-dimensional time series originating from single-channel transducers and are incapable of handling the multidimensional time series from multi-channel transducers. Previously, the multivariate multiscale sample entropy (MMSE) algorithm was introduced for multi-channel data analysis. Although MMSE generalizes multiscale sample entropy and provides a new method for multidimensional data analysis, it lacks necessary theoretical support and has shortcomings, such as missing cross-channel correlation information and having biased estimation results. This paper proposes an improved multivariate multiscale sample entropy (IMMSE) algorithm to overcome these shortcomings. This paper highlights the existing shortcomings in MMSE under the generalized algorithm. The rationality of IMMSE is theoretically proven using probability theory. Simulations and real-world data analysis have shown that IMMSE is capable of effectively extracting cross-channel correlation information and demonstrating robustness in practical applications. Moreover, it provides theoretical support for generalizing single-channel entropy methods to multi-channel situations.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-scale Data Fusion and Machine Learning for Vehicle Manoeuvre Classification;2023 IEEE 13th International Conference on System Engineering and Technology (ICSET);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3