Ship Classification Based on Multifeature Ensemble with Convolutional Neural Network

Author:

Shi Qiaoqiao,Li Wei,Tao Ran,Sun Xu,Gao LianruORCID

Abstract

As an important part of maritime traffic, ships play an important role in military and civilian applications. However, ships’ appearances are susceptible to some factors such as lighting, occlusion, and sea state, making ship classification more challenging. This is of great importance when exploring global and detailed information for ship classification in optical remote sensing images. In this paper, a novel method to obtain discriminative feature representation of a ship image is proposed. The proposed classification framework consists of a multifeature ensemble based on convolutional neural network (ME-CNN). Specifically, two-dimensional discrete fractional Fourier transform (2D-DFrFT) is employed to extract multi-order amplitude and phase information, which contains such important information as profiles, edges, and corners; completed local binary pattern (CLBP) is used to obtain local information about ship images; Gabor filter is used to gain the global information about ship images. Then, deep convolutional neural network (CNN) is applied to extract more abstract features based on the above information. CNN, extracting high-level features automatically, has performed well for object classification tasks. After high-feature learning, as the one of fusion strategies, decision-level fusion is investigated for the final classification result. The average accuracy of the proposed approach is 98.75% on the BCCT200-resize data, 92.50% on the original BCCT200 data, and 87.33% on the challenging VAIS data, which validates the effectiveness of the proposed method when compared to the existing state-of-art algorithms.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3