Intrinsic performance limits of extremely scaled field-effect transistors based on MX2 (M = {Zr, Hf}, X = {S, Se}) nanoribbons

Author:

Matić Mislav1ORCID,Poljak Mirko1ORCID

Affiliation:

1. University of Zagreb, Faculty of Electrical Engineering and Computing, Computational Nanoelectronics Group , Unska 3, 10000 Zagreb, Croatia

Abstract

We investigate the MX2 (M = {Hf, Zr}, X = {S, Se}) transition metal dichalcogenides patterned into armchair (AC) and zigzag (ZZ) nanoribbons (NRs) as potential channel materials in future logic field-effect devices. Ab initio quantum transport simulations are employed to assess the electronic, transport, and ballistic field-effect transistor (FET) properties of devices with such quasi-one-dimensional channels. We report a non-monotonic scaling behavior of MX2NR properties due to strong quantum confinement effects, which is reflected in a strong dependence of the ON-state current (ION) of MX2NR FETs on the nanoribbon configuration. The ∼2 nm-wide HfSe2 and ZrSe2 AC-PFETs have the highest ION of up to 2.6 mA/μm at 10 nA/μm OFF-state current. Surprisingly, MX2NR ZZ-NFETs exhibit a current increase of up to 70% when channel width is scaled down, with ION reaching 2.2 mA/μm in ∼2 nm-wide devices. The high ON-state performance is a direct consequence of high carrier injection velocity, which is explained by analyzing the band structure, transmission, and density of states. We demonstrate that nanostructured MX2 materials can be promising candidates for future logic transistors based on multi-nanowire architectures.

Funder

Hrvatska Zaklada za Znanost

Publisher

AIP Publishing

Reference49 articles.

1. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,2017

2. 3 nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications,2018

3. High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices;IEEE Electron Device Lett.,2006

4. Electronics based on two-dimensional materials;Nat. Nanotechnol.,2014

5. Two-dimensional materials and their prospects in transistor electronics;Nanoscale,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3