High transmission efficiency of intense sub-THz coherent phonons in strongly correlated VO2/TiO2 heterojunction

Author:

Wang Ziyue123ORCID,Zhang Fan12ORCID,Zhang Xiaoqiang12ORCID,Liu Yongshan123ORCID,Li Jiangxiao4ORCID,Xu Yong123ORCID,Zhang Yue123ORCID,Hong Bin12ORCID,Zhao Weisheng123ORCID

Affiliation:

1. National Key Lab of Spintronics, Institute of International Innovation, Beihang University 1 , Yuhang District, Hangzhou 311115, China

2. Nanoelectronics Science and Technology Center, Hefei Innovation Research Institute, Beihang University 2 , Hefei 230013, People's Republic of China

3. Fert Beijing Research Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University 3 , Beijing 100191, People's Republic of China

4. National Synchrotron Radiation Laboratory, University of Science and Technology of China 4 , Hefei 230029, People's Republic of China

Abstract

High-frequency coherent acoustic phonons hold immense value in characterizing the coupling between magnetic, lattice, and electronic properties, offering nanometer-scale spatial resolution within the ultrafast timescale. However, efficiently propagating intense sub-THz coherent acoustic phonons across diverse materials remains a formidable challenge. Here, we demonstrate that using vanadium dioxide (VO2) as a transducer can induce enhanced coherent acoustic pulses that propagate efficiently (∼90%) into TiO2 due to excellent acoustic impedance matching and minor lattice interface mismatch compared with traditional metals such as Pt, Au, and Cu. Employing time-resolved pump–probe reflectivity spectroscopy, we observe pronounced coherent phonon oscillations reaching up to 0.164 THz from the longitudinal acoustic mode along the c axis in VO2/TiO2. Furthermore, the temperature and pump fluence dependence of the coherent phonon oscillation signals suggest that the metallic state of VO2 responds to these large coherent acoustic phonons.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3